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ABSTRACT 

Intensively monitored watershed (IMW) studies whose intent is to quantify habitat restoration 

effects on salmonid populations have been underway in the Pacific Northwest, USA, for more 

than two decades, but the perception among some natural resource management and funding 

organizations is that such studies are too costly and results too equivocal to justify continuation. 

Lack of population-level response to habitat improvements by target species in some IMWs may 

be related to incomplete knowledge of factors regulating fish abundance, excessively prolonged 

restoration application periods, underappreciation of natural environmental and population 

variability, failure to carry out restoration at a sufficiently large scale within a watershed, lack of 

sufficient time to document post-treatment response, or to an actual failure of the restoration 

activities in those locations to achieve population recovery objectives. Yet, knowledge gained 

from IMWs has yielded important insight into long-term salmon and steelhead responses to 

different types of restoration and to the importance of placing freshwater habitat improvements 

in the context of changes in anadromous salmonid survival and growth during other life history 

stages. Scientists, funding organizations, and policy makers should be aware of hurdles in 

carrying out IMW studies, and realize the potential value of IMWs as long-term barometers of 

the status and trends of salmon populations and their habitats in watersheds where restoration 

activities are occurring. This requires a commitment to prolonged monitoring and an 

acknowledgment that environmental recovery after habitat restoration may take decades. 
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INTRODUCTION 

In the US Pacific Northwest (PNW), a network of Intensively Monitored Watersheds (Figure 1) 

has been established to evaluate the effects of habitat restoration on populations of imperiled 

anadromous salmonids, many of which are listed under the U.S. Endangered Species Act. IMWs 

generally possess small to mid-size streams and consist of watersheds in which habitat 

restoration treatments such as migration barrier removal, large wood addition, floodplain 

reconnection, or riparian revegetation have been applied. In some cases, treated watersheds are 

paired with a nearby control watershed that remains untreated. While many studies of stream 

restoration efficacy examine habitat and fish abundance at the scale of individual restoration 

sites, IMWs use a long-term monitoring approach to evaluate responses of salmonid populations 

in watersheds where multiple stream restoration activities have taken place over a period of years 

and typically employ an experimental design to help detect a restoration signal. The most 

commonly employed experimental design is before-after-control-impact (BACI), although some 

IMWs use simpler treatment/control or before/after approaches (Bennett et al. 2016) or more 

complex progressive staircase design (Walters et al. 1988). The time scale for monitoring varies; 

however, some Pacific Northwest IMWs have been monitored since the 1990s. Bennett et al. 

(2016) provide a detailed and comprehensive summary of the locations, types of treatments, and 

target fish species that have been studied.  

Over the typical projected 20 to 30-year life span of an IMW the cumulative monitoring 

expenditure for an IMW can be relatively high, with monitoring costs sometimes exceeding US 

$100,000 annually. With such a long-term study trajectory, funding organizations may ask what 

they are getting for their investment, while policy makers may wonder why it takes so long to see 
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results. Moreover, to date, few IMWs have shown an increase in target species population size 

(Bilby et al. 2022), and reasons for this apparent lack of success are typically multiple and can 

remain unclear. The lack of target-species population response may result from not restoring 

those habitat conditions that are most constraining the target population or to an inability to 

detect, from a monitoring perspective, a population increase. Alternatively, stream restoration 

may benefit the target population, yet those benefits are not sufficient to offset other factors 

outside of natal watersheds such as ocean conditions or harvest activities, contributing to overall 

salmon population declines. Regardless of the reasons, potential outcomes of an IMW study 

should be clearly understood and appreciated both by scientists involved in designing and 

carrying out the monitoring, and by those who have supported IMWs and who will learn from 

the results.  

Our objective in this paper is to review key expectations that typically underpin IMWs as an 

approach to evaluating habitat restoration success, even if they are not explicitly identified. We 

also examine what has been learned about the IMW study design in the Pacific Northwest over 

the past two decades, and suggest how lessons from the past can be used to develop realistic 

expectations for existing and future IMW endeavors, here and elsewhere. We hope these findings 

are useful to scientists involved in or contemplating an IMW study, to managers and other 

stakeholders wishing to know how well fish habitat restoration programs are working, and to 

funding organizations whose long-term support for IMWs is essential. 

IMW EXPECTATIONS 

Habitat managers often assume the ultimate measure of success for a suite of stream and 

estuarine habitat restoration actions is an increase in the number of adult salmon and steelhead 
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returning to spawn. The management goal of documenting population response through IMW 

research includes four implicit expectations with regards to aquatic habitat restoration for target 

species. The first expectation is that there is a direct relationship between habitat conditions and 

adult returns. The second is that the most significant habitat problems are addressed with 

sufficient restorative effort. The third is that the restoration signal will be larger than the noise 

created by natural variability. The fourth expectation is that a fish population response will occur 

within the timeframe of the restoration and subsequent monitoring.  

There has been an important distinction between management and scientific objectives for 

IMWs. While expectations have been to document salmon recovery at the watershed scale, the 

objectives of long-term scientific monitoring have focused on determining whether there are 

significant changes in habitat quality and population abundance following restoration, and if so, 

by how much. Habitat managers may view an inability of post-restoration monitoring to 

demonstrate population increases as study failure, while scientists may see the absence of 

measurable improvements as important evidence to assist in identifying which environmental 

attributes most limit target species in spawning and rearing habitats. 

Expectation 1. Habitat conditions regulate fish responses 

The biological response to habitat improvement efforts is critical to discerning the effectiveness 

of restoration activities (Roni et al. 2002). There is an expectation that as restoration improves 

freshwater habitat, an increase in the abundance of the targeted fish populations should be 

observed. This expectation is driven by a history of studies showing that habitat capacity and 

quality influence salmon abundance at all freshwater life stages, and that integration of density-
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dependent and density-independent survival processes across the entire salmon life cycle 

ultimately exerts a strong influence on abundance of adult spawners (Pess and Jordan 2019; 

Jorgensen et al. 2021; Beechie et al. 2021). In general, habitat capacity regulates the maximum 

number of adults, eggs, or juveniles that can be produced at any life stage. However, habitat 

quality also influences abundance through subsequent life stages, and either capacity or survival 

in certain life stages may limit population size (Moussalli and Hilborn 1986). If, for example, 

winter rearing habitat for Coho Salmon is scarce, winter habitat capacity may limit overall 

abundance of adult returns because the overwintering life stage constrains the number of smolts 

that can be produced from a watershed (Solazzi et al. 2000; Beechie et al. 2001). Empirical 

spawner-recruit relationships also suggest that populations may be limited by both habitat 

capacity and survival, and that in some cases increasing survival at certain life stages will not 

increase spawner abundance if habitat capacity is not correspondingly increased (Walters et al. 

2013; Bal et al. 2018; Hinrichsen and Paulsen 2020).  

Expectation 2. We are restoring enough of the right kinds of habitat 

A key expectation in the design of restoration work implemented within IMWs is that we are 

restoring the scarcest or most impaired habitats, and at the correct scale. This expectation is often 

based on models or expert opinion identifying critical limiting factors in need of improvement 

that have not yet been locally tested. Circumstances in a stream of interest may also not match 

model or expert opinion assumptions and requirements, due to several reasons, including but not 

limited to a shift in baseline habitat conditions since limiting factors were initially determined 

(Thurow et al. 2020). Our current definition of “acceptable” or “functional” environmental and 

habitat conditions does not fully reflect conditions that support healthy, resilient populations 
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(Thurow et al. 2020; Wohl et al. 2021; McMillan et al. 2022). For example, river-wetland 

corridors historically connected channels, wetlands, ponds, and lakes across floodplains, but their 

presence has been so diminished that the general public and even many river managers are 

unaware of their former pervasiveness (Wohl et al. 2021; Powers et al. 2022). As a result, current 

habitat restoration targets tend to be well below habitat availability and diversity levels that 

historically supported large salmon populations (Beechie et al. 2010; Beechie et al. 2013). 

Furthermore, there is the expectation that a sufficient portion of lost or degraded habitat can be 

restored to make a difference in targeted population response. This seems like a logical 

expectation given the multi-millions of dollars spent annually on recovery efforts for Pacific 

salmon (Roni et al. 2002), yet the scale of restoration is quite small compared to the scope and 

extent of existing habitat degradation (Roni et al. 2010). The amount of stream and watershed 

restoration needed to generate significant population response has been suggested to range 

between 20% of a watershed’s drainage network to almost the entire watershed in order to see a 

response that can be statistically demonstrated (Scheuerell et al. 2006; Roni et al. 2010; 

Jorgensen et al. 2021). Additionally, expressing the extent of habitat restoration as a localized 

metric, such as miles of stream directly affected by a restoration action, ignores the broader need 

of restoring watershed processes that sustain productive aquatic habitats over time. 

Restoring natural processes conceptually provides the greatest long-term benefits to aquatic 

communities (Sedell and Beschta 1991; Beechie et al. 2010). Focusing on natural processes 

allows for the dynamic nature of ecosystems to be expressed, which can result in multiple habitat 

states. Natural watershed processes and fish population resilience are impaired due to watershed 

degradation and can be reduced more so over time by climate change, invasive species, and 

greater exploitation of natural resources (Munsch et al. 2022). We acknowledge that treating 
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habitat degradation symptoms, such as in-stream wood loss, by adding instream wood to streams 

may be initially important to help accelerate restoration of impaired habitat conditions. Such 

additions may require multiple treatments over decades due to degraded riparian conditions, as 

was the case in Deep Creek where 23 years of wood additions resulted in aquatic habitat 

recovery (Pess et al. 2023). However, this is not a long-term solution because habitat restoration 

is not the final step; rather, restoration of natural processes and the allowance for various habitat 

outcomes to take hold is the best way to recover watersheds and populations (Bellmore et al. 

2019). 

Expectation 3. Natural variation will not obscure responses to restoration 

Anadromous fish populations vary over space and time, reflecting the influences of the highly 

dynamic marine, nearshore, and freshwater environments in which they evolved and presently 

occupy (Waples et al. 2008). Several studies indicate that abundance changes related to 

restoration can be observable (i.e., restoration signal exceeds environmental noise) when the 

scale of restoration is large enough and restoration actions address important habitat factors that 

limit fish production (Copeland et al. 2021). Modeling scenarios suggest that when habitat 

restoration is sufficient to increase average abundance by at least 25%, the effect of restoration 

can be statistically detectable for certain salmonid species (Roni et al. 2010), assuming 

significant shifts in environmental variability caused by climate change or other major 

environmental drivers do not occur. Restoring habitat connectivity by migration barrier removal 

and floodplain reconnection are common restoration actions that have resulted in positive salmon 

responses at multiple life stages, including returning adults (Pess et al. 2014; Ogston et al. 2015; 

Copeland et al. 2021). Restoring access to historically accessible spawning and rearing habitats 
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does appear to be effective in producing a restoration signal that can be detected over 

environmental noise. Removing large barriers (including dams) can expand the distribution of 

salmon populations by over 50% of a watershed, and can increase adult salmon population 

abundance by 100% to 400% (Pess et al. 2014). Instream flow enhancements and fish screen 

diversions can also increase available habitat and salmon productivity (Copeland et al. 2021). 

Documentation of salmon population responses to actions affecting small areas of a watershed 

has been much more difficult. 

Expectation 4. Responses to restoration can be measured within a short time period 

Implementing restoration actions at a watershed scale is both time consuming and expensive 

(Roni et al. 2005). Restoration activities often take many years to complete, and the response 

may take many years to detect. The time required to detect a population response depends 

primarily on the response parameters selected. Responses to be measured (e.g., population 

metrics, physical habitats, water quality conditions, aquatic food webs) vary with the type of 

restoration action (Roni and Beechie 2013), and the time required to detect a response may vary 

by response parameter. The time required to quantify a response to watershed restoration actions 

is influenced by whether the focus is on quantifying juveniles or spawning adults. For Pacific 

salmonids, field studies suggest a minimum of 3 years up to approximately 35 years to detect 

abundance changes with reasonable certainty (Solazzi et al. 2000; McHenry and Pess 2008; 

White et al. 2011; Pess et al. 2014; Bouwes et al. 2016; Brenkman et al. 2019). Oregon coastal 

Coho Salmon and steelhead were estimated to require 10 to 35 years of monitoring in order to 

document a two to three-fold increase in parr and smolt production after habitat improvements 

(Solazzi et al. 2000). Power analysis completed before Washington’s Elwha River dam removal 
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suggested that documenting a two-fold increase in the number of returning adult Chinook 

Salmon would require approximately 20 years of monitoring (about 4 to 5 generations) before a 

significant change could be detected (McHenry and Pess 2008). Elsewhere, salmon 

reintroduction after barrier removal and the creation of new habitats has resulted in a one to four-

fold increase in population abundance within 10 to 30 years post-restorative action (Pess et al. 

2014). In-stream habitat improvement actions such as wood placement, particularly in smaller 

streams (<15 m bankfull width), can lead to increases in adult biomass within five years with 

benefits lasting up to 20 years post-restoration (White et al. 2011). However, Bilby et al. (2022) 

found that many Pacific Northwest IMWs have been unable to document significant habitat and 

target species improvements following wood additions, although these studies have not been 

completed. Nearly all restoration projects have addressed physical habitats and channel-forming 

processes. Very few have dealt with restoring productive food webs that support fish growth and 

physiological health, and we are not aware of any studies that have estimated the time required to 

restore freshwater trophic regimes of Pacific salmon. 

Lessons from IMW Study Design 

We have learned much about conducting IMW studies involving habitat improvement actions at 

the scale of entire watersheds, as well as designing and implementing large-scale restoration 

response research. These lessons can be useful to others considering future IMW investigations.   

1. IMWs should include assessments of which restoration actions are most beneficial and 

how much and what types of restoration are needed to see a response 
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An important aspect of restoration planning in the context of IMWs is the use of analyses of 

current and potential habitat conditions, salmon life-cycle models, and salmon limiting factors 

analysis (Beechie et al. 1994, 2015; Jorgensen et al. 2021). These analyses lead to testable 

hypotheses concerning which types of restoration actions should be the focus of stream and 

watershed restoration so salmon population responses can be potentially detected through 

watershed-scale monitoring (Flitcroft et al. 2016). Such analyses should be completed prior to 

implementing restoration actions in IMWs (Beechie et al. 2010) and will form the basis for long-

term hypothesis testing. 

The expectation that we are restoring enough of the impaired habitats is rarely evaluated 

rigorously prior to implementing restoration actions. Restoration planning approaches are 

available for assessing landscape change (Bartz et al. 2006; Roni et al. 2017; Beechie et al. 

2021), and for using life-cycle models or limiting factors analysis to identify the types, locations, 

and scale of habitat restoration actions that are needed to produce a desired population response 

(Scheuerell et al. 2006; Jorgensen et al. 2021). Such analyses may highlight that commonly 

implemented actions are unlikely to produce a large salmon population response because they do 

not address the most important and widespread habitat problems (Jorgensen et al. 2021), and that 

a shift in focus is needed. Ultimately, IMWs, and other less well monitored restoration sites, if 

designed properly, provide the means to test whether habitat conditions in watersheds have been 

restored successfully; they are not designed to test an a priori assumption that restoration has 

achieved management objectives. Lessons learned from IMWs should feed directly into an 

adaptive management process (Bouwes et al. 2016). 
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IMW studies should include assessments of how extensive restoration treatments need to be to 

have measurable effects on target fish populations (Roni et al. 2010). Larger watersheds typically 

have more extensive degraded areas that need to be addressed though stream and watershed 

restoration actions. Downstream areas of large watersheds can also be more impaired than those 

within small watersheds due to cumulative effects of multiple stressors, versus a single type of 

habitat degradation. Greater funding and stakeholder coordination is typically needed to address 

stream habitat impairments within large watersheds.  

2. IMWs are designed to maximize what we can learn from habitat interventions, but they are 

not classical experiments 

Monitoring design should consider both the underlying assumptions of the study and how the 

study design affects the ability to detect a restoration signal. One consideration is that IMWs 

should include the spatially explicit monitoring of life stages of the species of interest. Expanded 

utilization of suitable habitats through barrier removal can lead to increases in fish growth and 

survival, or allow for a greater number of life history types, all of which can lead to greater 

abundance and population resilience (Bisson et al. 2009). However, IMW response metrics such 

as fish abundance can be highly variable in space and time at the watershed scale (Roni and 

Quinn 2001; Downes et al. 2002; Liermann and Roni 2008) and investigators must factor this 

variability into study designs and interpretation of results.  

To detect a treatment effect, investigators can implement a variety of monitoring designs to 

measure response variables and their spatial and temporal variation (Underwood 1994; Roni et 

al. 2005; Loughin et al. 2021). These designs typically include monitoring within treatment and 

control sites. However, an ideal, balanced, BACI experimental design with precisely replicated 
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treatments and controls is impractical in a broad landscape setting. This is not to imply that 

careful attention should not be given to setting up a study where management actions can be 

evaluated, but rather to accept that implementing such studies with normal operating constraints 

in highly variable environments is likely to prove diffcult (Bennett et al. 2016).  

One of the major differences between a classical experiment and watershed-scale ecological 

experiment is the interpretation of control sites. In laboratory studies, the ability to create a 

control that is identical to the treatment (except for the treatment) is an essential part of statistical 

design; however, at the scale of a watershed, neither identical replicates nor rigid environmental 

controls are feasible. Temporal variability controls power in BACI designs and synchrony 

between restoration and control watersheds may do little to increase power in field conditions 

(Rogers et al. 2022). Moreover, where conditions in treated and control watersheds do not follow 

identical trends prior to treatment application, because of natural disturbances, hatcheries, 

harvest, and land-use activities that occur differentially within treatment and control watersheds, 

the use of control sites in a BACI design may actually reduce statistical power (Roni et al. 2005).  

Researchers must adapt the strengths of designed experiments to the realities of control sites and 

select control watersheds as close as possible and as similar as possible to experimental treatment 

watersheds.  

One reality that IMW studies have demonstrated is that both natural and anthropogenic events 

contribute to the difficulty of detecting treatment effects. Unanticipated events such as severe 

floods, fires, or droughts cannot easily be factored into the original study design; however, such 

changes are common in multi-year, watershed-scale studies and should be accepted as an 

inevitable part of the research. In addition, a lack of sufficient spawning adults to repopulate 
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restored stream habitat can prolong or prevent the demonstration of treatment effects. The idea 

that “if you build it, they will come” may not be immediately realized, and in some cases 

restoration sites may be invaded by non-target species. On the other hand, extreme natural and 

anthropogenic events can provide unique opportunities for learning, and taking advantage of 

these rare opportunities by investigating the effects of the event may add to the overall utility of 

the IMW project. 

3. Natural variability can make it difficult to detect responses to experimental treatments, 

requiring adjustments to typical study designs 

Temporal variability decreases statistical power, making it difficult to detect significant 

treatment effects and thereby necessitating either a larger sample size or a longer measurement 

window, or both.  For example, data from four streams in coastal Oregon showed that it might 

take more than 70 years to detect a doubling of Coho Salmon smolt production in response to 

habitat restoration using a BACI design (Roni et al. 2003). Having a large sample size and 

randomizing treatments across study units can improve statistical power and reduce the potential 

for bias (Liermann and Roni 2008), but imposing these constraints on IMW study designs can be 

impractical. Recently, Rogers et al. (2022) have suggested that causal relationships from 

restoration actions to salmonid population metrics may be better drawn from designs such as 

Extensive Post-Treatment (EPT) or multiple BACI (mBACI) where multiple reach-scale, 

treatment-control pairs are distributed within a drainage basin or across a region. 

In an environment where decision makers do not have the luxury of multi-decade time horizons 

for evaluating policy choices, investigators are usually constrained to carry out the study in less 

time than is necessary to properly implement a classical design that could fully accommodate 
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natural variation. A common tendency among scientists is to intensively monitor a small set of 

study sites for longer periods of time in order to truly understand ecological patterns at a 

particular location (Bormann and Likens 2012).  However, statistical gains can be made by 

increasing the sample size, allowing the larger number of observations to absorb the natural 

variability so that trends across space and time can be better quantified (Liermann and Roni 

2008). Staircase designs (Walters et al. 1988), in which treatments are implemented over a series 

of years in stepwise fashion, are intended to separate the effects of environmental variation over 

time from treatment effects, and thus control for time-treatment interactions. Simulations 

performed on various study designs for IMWs found that a staircase design, where treatments 

were temporally staggered in one treatment section in each stream had the highest power and 

best precision, particularly when the variance in juvenile fish densities were high (Loughin et al. 

2021). Conversely, a tradition BACI design performed the worst, with intermediate performance 

using a combination BACI and staircase design (Loughin et al. 2021). Combined BACI and 

staircase designs tend to be more complicated and expensive to carry out at large spatial scales.  

The specific restoration questions being asked will determine the most appropriate study design, 

given natural variability.  

4. Statistically significant changes in abundance may not reveal the full range of restoration 

benefits 

While a commendable goal, obtaining statistically significant changes in juvenile abundance 

from restoration efforts is difficult, particularly if post-treatment monitoring is limited to a few 

years. Differences between the pre- and post-restoration means are often large but not 

statistically significant. For example, Reeves et al. (1997) found that the mean number of 
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steelhead smolts leaving Fish Creek, Oregon, increased 27.7% following restoration and mean 

number of age 1+ steelhead increased 11.7%. However, neither change was statistically 

significant because of the large variation around the long-term means. 

Responses to restoration efforts, however, may be ecologically important even if they do not 

achieve statistically significant thresholds. Increased juvenile growth and outmigrant size is a 

seldom acknowledged goal of restoration, but it can be a key to population viability (Copeland 

and Venditti 2009). In Fish Creek, Oregon, the size of juvenile steelhead increased with 

restoration, 4.1% and 3.2%, respectively (Reeves et al. 1997), but the increase was significant for 

age 1+ fish and not for age 2+ smolts. However, improved growth can be an important response 

to restoration because larger fish generally have higher marine survival rates (Brakensiek and 

Hankin 2007), which is particularly critical in times of poor ocean conditions. Expression of new 

life-history patterns as a result of restoration efforts (Bottom et al. 2005) is another example of 

critical ecological benefit that may not be expressed in abundance, but yet be beneficial to a 

population by providing greater life history diversity. 

5. Scientists and managers should work together to design, conduct, and interpret results of 

IMW studies 

Scientists and restoration managers together should establish realistic expectations for what can 

be done to maximize learning opportunities where a rigid control of factors other than the 

variables of interest cannot be achieved. For managers, this may mean forgoing some operational 

flexibility in terms of restoration implementation to maintain as much treatment consistency as 

possible across study locations.  For scientists, this may mean having to make concessions in the 

types of treatments and the location and timing at which they are applied.  Both managers and 
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scientists should also collectively establish realistic expectations of results relative to the 

questions being asked. It is possible that over the course of the study there may be strong 

pressure to conduct restoration in control watersheds. While such activities are likely to 

confound results, scientists should realize that the ultimate decision on watershed-scale habitat 

restoration resides with policy makers and be prepared to factor unanticipated interventions in 

control sites into the final analysis of results. 

6. Investigators should implement a design and stick with it until the important questions are 

resolved. If variation of the parameters of interest proves too great and goes beyond what 

was planned, then it may be time to stop 

IMWs are typically set up as large-scale, long-term studies because restoration activities, even 

just one type, can require years to decades to fully implement and mature (Pess et al. 2023). It is 

unreasonable to assume that stream and watershed restoration actions can reverse in a few years 

what took a much longer time period to degrade (Allan 2004). Even for simple restoration 

actions that re-open large amounts of habitat, fish responses can take many years to fully 

measure (Pess et al. 2014). For more complex situations involving multiple restoration actions, 

biophysical processes need to function properly over long enough time periods to sustain the 

desired habitat changes. It is important for all stakeholders to understand that stream and 

watershed restoration effects may not be fully expressed immediately, that the indirect effects of 

restoration often require time to sort out, and that there is a need to commit to supporting 

monitoring for extended periods (Diefenderfer et al. 2021). 

It is also important to avoid introducing fundamentally different types of restoration actions 

during the timeframe of an existing IMW design (e.g., supplementing wild fish with fish of 
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hatchery origin). This can confound study results. Conversely, it is important to recognize that if 

results of monitoring prove to be extremely variable, there may be no compelling reason to 

continue due to extreme variation. It may take several years or one exceptionally large 

disturbance to reach this conclusion, but there is little to be gained by continuing research that 

cannot lead to new insights, even if treatment consistency is maintained. 

7. It may be advantageous to employ novel response metrics during an IMW study, and when 

surprises occur, to be flexible enough to monitor their effects in order to maximize learning 

opportunities 

It may become apparent after a study has been initiated that adding a new metric to the suite of 

response variables in the monitoring plan can yield important information (Tonra et al. 2015, 

2016). Even if the metric or method is relatively untested in the context of the IMW study 

questions, the benefits of incorporating something novel with the potential to shed new light on 

ecological processes that control system response may outweigh the risks of ignoring it. 

Conversely, if a metric does not provide useful information after a reasonable trial period, it can 

be dropped from the effort. A new metric might not help answer the original questions but 

instead may contribute information of a different value. Addition of a new metric to the suite of 

response variables does not mean altering the initial study design. 

In summary, IMWs can provide valuable information at the watershed scale because they allow 

us to monitor changes at scales relevant to breeding populations. This is important to mangers 

and funding entities who want to know if the actions and investments are improving fish species 

of interest. However, it is critical to understand that IMWs are complex, large-scale, long-term 

studies that can take decades to demonstrate habitat improvement effects at the population level, 
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and therefore they require continued commitment from stakeholders. If IMWs are implemented 

and thoughtfully managed, they can provide recovery insights that cannot be captured with other 

methods. 
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Figure and legend 

Figure 1. Location of currently active intensively monitored watersheds in the Pacific Northwest 

(redrawn with permission from Bennett et al. 2016). 
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